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Summary

The standard method to evaluate an oil- or gas-production-decline
curve estimated with an exponential function—taking the loga-
rithms of both sides of the equation, estimating the parameters of
the transformed function through linear regression, and exponenti-
ating—leads to biased estimates of future production. The bias
arises in the process of exponentiation.

The direction and magnitude of exponentiation bias depend on
three driver variables: the variance of the post-peak-production
history; the number of post-peak observations on production; and
the estimated rates of production during the forecast period. A
correction factor, dependent on the confluent-hypergeometric-
limit function, applied to the biased estimators produces unbiased
estimates of future production. The correction factor can be
quickly evaluated and introduced into the work flow for use in
evaluating exponential-decline curves.

The net bias in estimates of future production is more likely to
be negative than positive. Negative bias understates remaining
resources and reserves. The probability of negative, rather than
positive net bias, is an increasing function of the maturity of pro-
duction at the point of evaluation. The absolute magnitude of the
bias is a direct function of both the variance of the empirical post-
peak-production history and the forecasted rates of future produc-
tion. It is an inverse function of the length of the post-peak-pro-
duction history.

A data set of 54,254 completion-level monthly production his-
tories from the Gulf of Mexice (GOM) was used to quantify the
bias and show the characteristics of production that determine its
direction and magnitude. In this data set, exponentiation bias in
estimates of remaining resources usually results in small absolute
errors. Holding out varying fractions of the production histories of
the completions analyzed, the interquartile range for errors in the
estimated remaining resources (relative to unbiased estimates)
extends from an underestimate of 886 to an overestimate of 2,105
BOE.

However, at the extreme ends of the distribution of errors,
maximum underestimates of 8.3 million BOE and overestimates
as large as 22.5 million BOE were found. More than 14% of the
completions analyzed had forecast errors of more than 30%.
Exireme biases are predictably associated with specific ranges
and combinations of values of the three driver variables. There-
fore, exponentiation bias can have very large and predictable
effects on the economic value of estimated remaining resources,
but they can be reliably corrected.

introduction

Forecasting future production rates, remaining resources, and
reserves in reservoirs and wells by use of production history has
served as a basic petroleum-engineering tool for more than a cen-
tury. Although there are several mathematical functions used to
relate past to future production, the model of exponential decline
is perhaps the most broadly applied. Unfortunately, the standard
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method to quantitatively evaluate the exponential model produces
biased estimates of future production, the volume of remaining
resources, and reserves derived from them.

Arps (1945) published the first rigorous and systematic exposi-
tion of decline curves in the middle of the 20th century. By use of
the technology of the day, log-linear (i.e., semilog) graph paper,
Arps (1945) plotted production on the logarithmic vertical axis
and time on the linear horizontal axis. In hand-fitting a straight
line through the data, its slope estimates the constant-decline rate
of the exponential model. Eventually, graphical methods gave
way to computer-automated statistical estimates of the parameters
of the log-lincar specification. In either event, estimates of the
log-transformed intercept and slope parameters of the line are
exponentiated. The area under the forecast curve from the last
production observation to the point of abandonment is typically
taken as an estimate of remaining producible resources.

The source of error identified here is not in the statistical esti-
mation of the log-linear model of production vs. time. The bias
occurs when the estimated parameters from the log-linear specifi-
cation are reconverted by exponentiation back into linear space.
We call this exponentiation bias. Finney (1941) originally identi-
fied this error and showed how to correct the associated bias. We
focus first on the effect of the bias on estimates of future produc-
tion and then discuss the implications for estimates of remaining
resources and reserves.

Given the broad use of exponential medels, recognition and
correction of exponentiation bias are not as widespread in the sci-
entific literature as might be expected. The papers that do exist
range widely, including economics (Goldberger 1968), biogeo-
chemistry (Middelburg et al. 1997), and limnology (Sobek et al.
2011). However, the problem is most often noted and rectified in
the biological sciences (Sprugel 1983). Despite the centrality of
expenential models in petroleum-engineering practice, there is no
identification of the problem in the literature or evidence of cor-
rection in professional practice. To be fair, there are many other
sources of error in decline-curve analysis that may overshadow
exponentiation bias. Nevertheless, it is important for petroleum
engineers to be aware of exponentiation bias and have tools to
correct it. In this paper, we set the problem and solution in context
by use of a data set from the GOM of 54,254 completion-level
exponential-decline models (Earth Science Associates 2016).

Exponentiation Bias in Estimates of

Future Production

Bias in Log-Linear Parameter Estimates. Arps (1945) pro-
posed a deterministic model of which the decline in the produc-
tion rate, ¢, at time, ¢, from a reservoir, well, or completion is
proportional to the production rate. This is known as exponential
decline and can be expressed as a differential equation,
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In Eq. 1, b 1s the decline rate and therefore h < 0. Solving
Eq. 1 yields



where y = In(g) and @ is a constant of integration. Typically, the
production of a well is thought of as observations on y and # (time,
measured in months on line). The regression model adopted
here is

Yi=a-+bt+¢g.

If we assume that residuals, ¢;, are independently and identi-
Cally distributed normally with zero mean and constant variance,

» the standard-regression technique applied is ordmary least
squares to estimate values for a (4) and b (b) This in turn pro-
vides an estimator for y called y:

V=4d-+ht

Eg. 4 is an unbiased estimator for y = In(g); however, an
unbiased estimator of ¢ is desired. It would seem that a reasonable
estimator for ¢ = ¢” is ¥ = ¢j:

where A = ed. Eq. 5 is the usnal equaticn used to model exponen-
tial decline of a completion, well, or reservoir. However, this
model produces a biased estimate for future production. Because

yi = N{a + bt;, a*), then & is log-normally distributed, and it fol-
lows that
14
E@A»)=e""™%3% (6)

Comparino Eq. 6 with Eq. 5 shows the multiplicative bias of
1,

e 17 It a, b, and ¢* are known with certainty, then Eq. 6 would
be a suitable estimator for ¢. However, because a, b, and o* are
being estimated, to develop an unbiased estimator for production,
a function,f(c‘rz), must be found such that

Bl (et = T (7)

This holds becauae é, b,and 6 are complete sufficient statis-
tics for a, b and ¢? (Lehmann and Casella 1998) and the distri-
bution of ¢ is independent of the distribution of @ and b.

Our analysis focuses exclusively on identification and correc-
tion of exponential-decline-curve-estimation bias. We recognize,
however, that the bias issues addressed here extend to generalized
exponential- and hyperbolic-decline-curve models as well as to
other even-more-general functional forms. We conjecture that
logarithmic backtransformation of decline-curve-parameter esti-
mates to estimate production per time period suffers from related
forms of bias. Proof of this and computation of corrections are
likely to be different, but related to the structure of proof and cor-
rections for the classical exponential-decline-curve model pre-
sented here. Although perhaps important in both theory and
engineering practice, a study of this conjecture exceeds the
bounds of the present paper and awaits attention by others.

Correcting the Bias. Finney (1941) first recognized this bias in
log-linear models and proposed a minimum-variance unbiased esti-
mator (MVUE). Unfortunately, the initial solutions from Finney
(1941) were written in terms of a function that converged slowly,
which made it difficult to use in practice. Aitchison and Brown
(1957) numerically approximated the Finney (1941) correction.
Heien (1968) extended those ideas to log-linear regression, and
Bradu and Mundlak (1970) further expanded them to general log-
normal regression and also derived expressions for the variance of
the MVUE. In his original work, Finney (1941) noted that his esti-
mator could be written in terms of a Bessel function, but this did not
prove useful until Seaborn (1991) rewrote it as a hypergeometric
function. The hypergeometric function can be rapidly approximated
numerically, making the bias correction easy to use in practice.

The MVUE for the expected value of production, £(g), is the
biased estimator (Eg. 5) multiplied by a correction factor, G, to

correct for intercept-term bias. This estimator, as given by Shen
and Zhu (2008), is
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The correction factor is written in terms of the confluent-
hypergeometric-limit function:

oF1{a;z) = ;nf;:c)n’ ...................... (9)

where (o), = ot(ot + 1) (o + 2)...(2t + n — 1) (Seaborn 1991),

where m = n — (p+ 1) is the number of degrees of freedom; p is
the number of regressors; and # is the number of observations (hele,
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p= 1, and therefore m = n — 2); where f(r) =— S R
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1 is the midpoint (at n/2) of the observations on produumn from the
meonth of peak production to the month of last production (n); and
n
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where 6% = is an MVUE of the variance of y.

Further Exploring Exponentiation Bias. The value of the cor-
rection factor, G,, determines if the bias of an uncorrected esti-
mate of production (Eq. 5) is positive or negative. Because the
value of G, is maximized at t =7 and is greater than unity,
the bias at that point is always negative (Fig. 1). Wherever
the bias is negative, the uncorrected regression underestimates
future production.

From its maximum at # =7, G, declines symmetrically in both
directions away from 7. It equals unity at two points in time
equally spaced before and after 7, hereafter referred to as
fc— and 7, respectively. The crossing point preceding 7, fc is of
no interest for prediction. However, the crossing point after 7, fc.
is important because G; = 1 and at that point there is no bias.
Therefore, from ¢ to t¢,, exponentiation bias is always negative
but decreasing in absolute magnitude until disappearing at 7. At
i > ftcy, Gy < 1 and the bias becomes positive and increases in
magnitude as (7, becomes progressively smaller with increasing
t. We refer to fc, as the bias-crossover point (from negative
to positive).

There are two related reasons that the value of G, reaches its
maximum at the midpoint of the production time series (7). First,
in ordinary-least-squares regression, the variance of the estimator
of the dependent variable [Var(y) in Eq. 4] is minimized at the
mudpoint of the independent variable’s domain and symmetrically
increases in both directions away from it. Second, for G, > 1 to
occur in general, the second argument of the confluent-hypergeo-
metric-limit function must be positive. Expanding this term from
Eq. 10, we obtain
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Because Var(y) at r— I is the minimal value for Var(y,) and by
definition, Var(y) at t = 7 is 6/n, then necessarily

Therefore, is positive only when Var(j) < &>

Var@r=?)

and the second argument of the confluent-hypergeometric-limit
funetion in Eq. 10 is maximized, as is G,.
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Fig. 1—The operation of exponentiation bias in a decline curve. Monthly oil production is shown from its peak production (t=1) to
its final observation (t = n). At the median observation, 1, the correction factor (Gf=1.37) is maximized and the absolute magnitude
of negative bias reaches its maximum value and then declines to zero at {c.. Between the final observation of production (f= n)
and the time of abandonment (dependent on the unbiased estimator, t,), estimates of future production by use of the usual estima-
tor (Y:) are negatively biased between f, and i, and positively biased between f., and f,. The estimated time of abandonment,

dependent on the biased estimator, is also shown at i,..

To solve for ¢, the second parameter of the confluent-hyper-
geometric-limit function must equal zero. This occurs when

- n—1| -
=74 1 | (13)
n
i=1

Expanding the summation gives
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i=I =1

i=1

The solution of f-; becomes simpler when the independent
variable (time) is denominated as the number of months past
peak production; the month of peak production is = 1 and the in-
dependent variable becomes r=1,2,3,...,n. The right-hand
side of Eq. 14 will further simplify, by use of the summation for-
mulas, to

nln+1){(n—1)
12 '

n i
Substituting » 7 — 27y, +ni® from Eq. 15 into Eq. 13
yields i=1 =1

; _n+1+rr—1 n+1
B="3 2 ¥V 3

Then -, where bias crosses from negative fo positive, is
expressed entirely in terms of n. By use of this expression, it
is obvious that fr, always occurs on or after the last observation
{t,)) because

n+l n—1 /n+1
fev =—+73 5 =

for all # > 2 with equivalence only when n = 2.
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Exponentiation Bias in Estimated

Remaining Resources

Estimating monthly production in the future is the fundamental
purpose of decline-curve analysis. By use of forecasted future
production, estimates are also made of remaining resources and of
reserves. The former is the sum of estimated production from the
month after the last empirical observation on production until the
abandonment rate is reached. Reserves are an economic function
of estimated remaining resources. Therefore, estimates of both
remaining resources and reserves can inherit bias if they are built
on biased estimates of future production. The bias in calculating
remaining resources inherited from use of a decline curve gener-
ated from a biased exponential model (Eg. 5) will be referred to
as net bias.

Exponential-decline-curve estimates of future production,
without correcting for exponentiation bias, can be consistently
negative or both negative and positive between the last observed
production and abandonment. Therefore, net bias can be negative,
positive, or zero depending on two factors.

The first factor is the maximum value of the bias-correction
factor G, at t =7. The higher the variance and the larger G, at
{ =7, the more the line representing the biased estimate of future
production is rotated counterclockwise through a fulerum at 74,
relative to the fixed line representing the unbiased estimate of pro-
duction (Fig. 1).

The second factor is where f¢ falls relative to the point of
abandonment for the unbiased decline curve (t4). There are
two cases.

The first case is that if f¢ > 14, then the bias for all months of
future production is unambiguously negative, as well as estimates
of remaining resources and reserves derived from them. More-
over, the biased estimate rcaches the time of abandonment (/4.)
before the unbiased estimate (so 4, < f4) and the unbiased esti-
mate forecasts a longer period of future production. Therefore, the
absolute magnitude of the underestimation in remaining resources
is the sum of the difference between the two estimators over the
time period they are both forecasting productien plus the sum of
additional resources forecasted by the unbiased estimate during
the extra time of production:

fas

3 (19,6, — 2 + 37,6,
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The second case is that if 1c | < 14, the sign of net bias depends
on the difference between the magnitude of negative bias between
tp+1 and 7c. and the magnitude of the positive bias between
fc+ and £4. Added to this is the quantity of additional resources to
be produced in the forecast from t = f4 to £ = r4,. As in the case
of fe, < ta, the unbiased estimate reaches abandonment before
the biased estimate, 50 14 < t4,. Within the two subperiods of neg-
ative and positive bias, the absolute magnitudes of the under/over-
estimates are functions of the production rate and the correction
factor in each menth. In the rare case where the magnitude of the
negative bias (between #,.; and t0}) is equal to the sum of the
positive bias (between ¢, and £4) plus the volume of output pro-
duced between i, to 4., the total net bias is zero.

These characteristics of exponentiation bias lead to several
practical conclusions applicable to use of an exponential-decline
model, estimated in semilog space, and then exponentiated
to forecast future production, remaining producible oil and gas,
and reserves.

1. The uncorrected estimates of future production from very-
mature wells are most likely to be negatively biased (because
large n postpones fcy beyond f,) and small in magnitude
(because the physical volume of production is low).

. Completions evaluated shortly after peak production have
small #, so postponement of 7. beyond 1,, is relatively short
and more likely to fall before #4. It will, therefore, have a
negative bias between f, and f¢. and will have positive bias
between ¢y and t4. If the production rate is high, then the
time between 7 and 14 will be large and the biased estima-
tor will overestimate the remaining resources. The magm’-
tude of the overestimation will also be determined by &>

3. If &7 is small, then the difference in remaining resources
between the biased and unbiased estimators is likely to be
insignificant.

4. If t¢y. > 14, then the larger the &% and the greater the under-
estimation of remaining resources. With other conditions
remaining the same, the lower the &2, then the smaller the
absolute magnitude of bias will be, but it is still negative,

Figs. 2a through 2d show examples of completion-level pro-
duction histories from the GOM. In Figs. 2a and 2b, the values of
&% are high, making G_; high (both alse illustrate the decline in
variance as a functton of post-peak time on line). However,
because both also have long production histories, the bias-cross-
over points are postponed beyond ¢4. Therefore, the bias is unam-
biguously negative over the forecast period but relatively small in
volume because the final observations on production are so close
to the abandonment rates for both completions.

Fig. 2¢ shows a much-lower-variance post-peak-production
history, therefore G, - is nearly unity and biased and unbiased
estimates of production beyond the last observation are approxi-
mately equal. In Fig. 2d, the situation is even more extreme in the
positive direction. The production history is so short that the bias-
crossover point eccurs slightly after the final observation on pro-
duction and the bias remains positive until abandenment, making
the uncorrected estimate a small overestimate of unbiased esti-
mate of remaining resources.

Confidence intervals (ClIs) can also be constructed for the
unbiased estimator by applying the formula for variance (Eq. 19)
as given by Shen and Zhu (2008):

mil —f()] 4} )
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Substituting ¢(r) for ¢(r) and & for ¢ yields an estimate of the
variance of the unbiased estimator. Assuming normality and fol-
lowing standard techniques lead to a CI for ¢(r) by use of

CI = §{t)xz./Var[g(r)],

with z chosen to correspond to confidence-level choice. Figs. 2e
through 2h show the same forecasts as in Figs. 2a through 2d,
with CIs added.
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Results for the GOM

To quantify the effect of exponentiation bias on a very large data
set, we used 54,254 completion-level monthly production histor-
ies from the GOM. Of the 54,254 completions, 42,707 had pro-
duction histories suitable for decline-curve analysis on the oil
production and 46,971 had suitable gas-production histories. For
each completion, corrected- and uncorrected-exponential-decline
curves were applied to post-peak-production histories to estimate
remaining resources (see Appendix A for the method used to
determine peak production). Abandonment rates of 10 BOPD and
50 Mcf/D of gas were used. Subsequently, the post-peak-produc-
tion history of each completion was re-evaluated by use of the
first 10% of the production history. This was repeated, by 10%
increments, up to 90% of the production history. These holdouts
reflect the position an engineer would face in estimating future
production from the carly through late stages of production.

Figs. 3a through 3i show the distribution of errors, defined by
subtracting the unbiased from the biased estimate of remaining oil
and gas for each completion. Because of the similarity of results
between oil and gas, errors are expressed in BOE, with gas con-
verted at 5.62 Mcf of gas per BOE. The errors range, over all
holdout cohorts, from a maximum underestimate of 8.3 millien
BOE to maximum overestimate of 22.5 million BOE (Table 1).
However, most errors are much smaller; the interquartile range of
errors over all holdouts was from an underestimate of 886 to an
overestimate of 2,105 BOE.

That the distribution of error systematically changes over the
maturity of a completion is clear from Figs. 3a through 3i. Most
importantly, the number of completions with negatively biased
errors increases with the maturity of production. Completions very
early in their production history, when only 10-20% of the post-
peak-production history is complete (Figs. 3a and 3b), show the
highest frequency of positively biased estimates (68% of the esti-
mates for the 10% cohort and 60% of the 20% cohort). However,
by the midpoint of the production history (Fig. 3e), positively bi-
ased estimates drop to 30% of the total, and by the 90% cohort,
only 7% are positive. The sharc of errors reflecting negatively bi-
ased estimates correspondingly increase as a function of maturity
to dominate the distributions of mature-production histories.

Dividing each of the full distributions shown in Figs. 3a through
3i at zero into distributions of negative and positive errors provides
further insights (Table 1). Although the share of positive vs. nega-
tive errors shifts, the absolute value of the means and medians are
both relatively stable functions of maturity. The medians and
means of absolute negative errors increase by a factor of approxi-
mately 3—4 between the 10 and 909 cohorts; the same statistics for
positive errors decrease by approximately the same factors over the
same cohorts (Table 1). Because of error in both directions (the
mean ranges from —6,058 to 50,960 BOE and the median from
—1,146 to 3,741 BOE over maturity cohorts) in mest instances,
exponentiation bias does not create either large overestimation or
underestimation of remaining resources and, therefore, reserves.

The fact that, on average, the volumetric effect of exponentia-
tion bias is small relative to the ultimate recovery does not mean
that it can be ignored. In the extremes of the distributions, the
absolute magnitude of errors for remaining resource runs to mil-
lions of BOE. Because most errors are negative, reserves esti-
mates Inherit underestimation and the magnitudes of error in the
extreme quantiles of the distribution translate into millions to hun-
dreds of millions of dollars of understatement of economic value,
The exireme positive errors, leading to overestimation, are an
order larger and occur more frequently in the holdouts that use
fewer data (Table 1).

The extreme positive and negative errors in estimates of
remammg resources are systematically associated with variance
(6*). The top 0.1% of the negative errors over the entlre distribu-
tion of Errors over all the holdouts has a median 6 = 0.60 and
mean & =0.64. The top 0.1% of the positive errors has a median

=0.067 and mean &> =0.095 These compare with a median

=0.22 and mean &> =029 for the entire sample. Therefore,
the differences between the central tendencies of variances in the
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Fig. 2—(a through d) Four completion-level decline curves from the GOM. (a) and (b) Cases of exponentiation-bias underestima-
tion of future production. (c) Case of nearly zero bias, because variance is very low. In {d), the combination of low variance and
very-short production history leads to positive bias. (e through h) These are the same as (a through d), but with 95% Cls (shown in
black dashed lines). (e, f) Cls are wide; those for (e) extend below zero. (g, h) There are much-narrower intervals caused by low var-
iability in the production data. Completions are identified by the well APl number and the completion interval number. Field names
are abbreviated: EC = East Cameron, Gl = Grand Isle, and WD = West Delta.

0.1% quantiles differ by a factor of approximately three. The dif-
ference in the degrees of freedom between the extreme positive
and negative errors is also significant. The top 0.1% of negative
errors has a mean degree of freedom of 61, whereas the top (.1%
of positive errors has a mean of 10. The mean degree of freedom
for the entire sample is 17.

The largest negative and positive errors in estimating remain-
ing resources occur when outlying values of ¢* and » are com-
bined with high production rates between the last production and
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abandonment because the absolute magnitude of the bias is the
product of the correction factor (G,) and the uncorrected esti-
mated-future-production rate (¥,), as shown in Eq. 8.

Finally, our analysis of the absolute magnitudes of bias and
the frequency with which high error estimates occur are conserva-
tive because of two methodological decisiens in the analysis of
the GOM data. First, we used months on line as the measure of
time, which eliminates months of zero production. Use of calen-
dar months would necessarily increase the variance of records of
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Fig. 3—(a through i) The distribution of errors from exponentiation bias in estimating the remaining resources of 54,254 comple-
tion-level production histories from the GOM (green is oil; red is gas). The numbers above each graph show the percentage of the
production history used in the analysis of each cohort. The error on the x-axis is the biased estimate of remaining resources minus

the unbiased estimates in BOE.

post-peak-production histories and therefore the sizes of biases in
estimates of future production. Secend, because we identified peak
production as the maximum output after the final break in regime
of the production history (Appendix A), the variance used in the
analysis was lower than that obtained if peak production was
defined as the global maximum rate of production.

Conclusions
Fitting an exponential-decline-curve model to post-peak-produc-
tion history, by use of the usual method of semilog transforma-
tion, produces biased estimates of future production. The cost of
failure to correct this bias is that volumes of oil and gas are
wrongly added to or removed from the remaining volumes esti-
mated to be technically and economically recoverable.

Empirical results for the sample of 54,254 completion-level
production histories from the GOM show that the net direction of

Negative Errars (Underestimate)

the bias is typically negative, creating an underestimation of
future production, remaining resources, and reserves. The abso-
lute magnitude of errors in both directions is usually very small
relative to ultimate recovery. However, in rare cases, it can cause
errors of hundreds of thousands to millions of BOE of estimated
future production.

Although the magnitude of the error is usually low, its correc-
tion by use of the confluent-hypergeometric-limit function is
straightforward and computationally inexpensive to apply. There-
fore, there is no reason not to correct the bias, even when the error
is small. There are very compelling economic reasons to correct
the bias under those empirical conditions that lead to extreme
magnitudes of error.

There are many technical and economic factors that may affect
the production rate of a completion beyond the performance of
the reservoir. These include mechanical problems from the com-
pletion to the field-level processing facilities and weather and

Positive Errors (Overestimate)

Absolute Absolute
Holdout Cohort Median Absolute Mean Maximum Median Mean Maximum
10% 341 1,718 338,600 3,741 50,960 22,480,000
20% 497 2,412 1,129,000 3,130 44,960 12,910,000
30% 664 3,732 3,845,000 2,432 36,190 22,340,000
40% 770 4,435 5,455,000 1,891 26,430 5,862,000
50% 870 4,708 5,483,000 1,543 26,340 10,080,000
60% 967 4,990 4,869,000 1,323 21,930 4,302,000
70% 1,019 5,202 8,332,000 1,109 17,760 3,636,000
80% 1,055 5,433 4,588,000 1,095 19,080 3,514,000
0% 1,146 6,058 4,034,000 1,160 19,240 2,884,000

Table 1—Characteristics of errors from exponentiation bias in the GOM (shown in BOE).
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transportation disruptions; there are also economic considerations
that may lead to reduction or shut in of production. The effects of
these exogenous sources of variance may swamp errors in produc-
tion forecasts arising directly from exponentiation bias, but they
do not eliminate or offset errors caused by this bias.

In contrast, in other branches of science where this problem
has been identified and corrected, the exponential function has
usually been used for modeling interpolation of values within the
bounds of existing data. In that case, the bias is always negative,
because ro. always falls after the end of the data series and its
magnitude is larger because G, is larger the closer ¢ is to 7. For
decline curves, the use of the exponential function is for extrapo-
lation to estimate values beyond the data series. Therefore, net
exponentiation bias can be positive, negative, or zero, and the
absolute magnitude is likely to be smaller because the correction
factor is multiplied by low production at the end of the comple-
tion’s producing life. In addition, positive and negative compo-
nents offset in the calculation of net bias.

Nevertheless, given the ease of correction and the extremely
high economic consequences of (admittedly low-probability)
high-magnitude errors, failure to correct exponentiation bias is
unjustified as a matter of standard petroleum-engineering practice.
Given the multitude of factors that degrade the accuracy of
decline-curve analysis, its overall accuracy can be unambiguously
improved by recognizing and treating this source of error that
arises for purely a mathematical reason.

Nomenclature
@, b = two parameters of linear-equation mode]

a, b = estimates for a and b
A=ced
¢ = base of natural logarithms
E = expected value operator
[ = function operator

of1 = confluent hypergeometric-limit-function operator
G, = hypergeometric-limit-function correction factor at time ¢
m = number of degrees of freedom
n = number of observations between peak and final observed
praduction
N = normal distribution operator
p = number of regressors
g = production per unit of time
¢ = estimated production per unit of time by use of the cor-
rected estimator
t = unit of time
t = midpoint of production-time series between peak and last
observed production
t4 = time of abandonment for the corrected estimator
taw = time of abandonment for the uncorrected estimator
te_ = crossover point (zero bias) before 7
4 = crossover point (zero bias) after 7
Var = variance operator
= natural logarithm of the production rate
estimator of the natural logarithm of the production rate
= ef
= the second argument of the confluent-hypergeometric-
limit function
o = the first argument of the confluent-hypergeometric-limit
function
& = stochastic error term of linear regression
6% = variance of y

it
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Appendix A—Determining Peak Production

In the ideal presentation of decline-curve analysis, peak production
is taken as the global maximum rate of production from the comple-
tion, well, or reservoir under study. However, many things can occur
between the global maximum and the last observation on produc-
tion. Shutdowns for repairs, weather, and transportation problems
are among the frequently encountered reasons to stop or severely
reduce production that are not strictly related to performance of the
well and/or reservoir. In all these cases, reducing or stopping produc-
tion adds to the variance of the production, which affects exponen-
tiation bias. To fit the decline curve over the part of the production
history most relevant to forecasting future performance, engineers
often change the start of the analysis to a point beyond the global
maximum, thus eliminating irrelevant variations in production.

In this study, decline curves were estimated in batches of tens
of thousands, so detailed examination of individual production
histories and adjustments of starting points was infeasible. To
assure that decline-regression techniques are properly applied to
each production history, a cumulative sum (CUSUM) test
designed to identify structural breaks in a regression regime was
applied. This test was developed in the 1950s for production-pro-
cess-quality control (Brown et al. 1975).

Here, the (exponential) rate of decline of a completion’s pro-
duction from a global maximum is assumed constant. Specifically,
the efp function in the strucchange library of R was used to find
and test the significance of changes in all production histories
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Fig. A-1—(a through d) Black dots show where the start of the final decline regime identified by CUSUM testing begins. Qil is
shown in green and gas in red. (a, b) These are examples in which no significant break in regime is found, so the global maximum
was used as the start of the decline regime, (¢, d) These are examples of a break in regime beyond the global maximum.

(Zeileis et al. 2002; Zeileis 2006). Once all significant structural
breaks in a completion’s production history are identified, the
maximum production after the final break in the production his-
tory is taken as the maximum production rate from which the
decline curve is estimated.

Of the 54,254 completion-level production histories examined
here, 27,227 (or 50.2% oil-production histories) and 25,804 (or
47.6% gas-production histories) contained significant breaks in re-
gime. In Figs. A-1a through A-1d, examples of four production
histories are shown. Two of them contain no statistically signifi-
cant breaks in regime (Figs. A-la and A-1b) and two do (Figs.
A-Ic and A-1d). In the latter two cases, the maximum producticn
rate used in the decline-curve analysis was shifted from the global
maximum production to the maximum associated with the point
of the structural break (the black dots).

The decision to limit the decline-curve analysis to time after
the final structural break and the decision to use months on line to
measure time minimized the empirical variance relative to use of
a global production maximum and calendar time as the independ-
ent variable. Both decisions supported focusing on the effect of
exponentiation bias, but they also made assessment of its empiri-
cal effect conservative.
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